Heterosupramolecular Chemistry: Self-Assembly of an Electron Donor (TiO₂) Nanocrystallite) - **Acceptor (Viologen) Complex**

Lucy Cusack, S. Nagaraja Rao and Donald Fitzmaurice"

Dedicated to Dr. Satoshi Ushioda on the occasion of his 65th hirthdaj.

Abstract: **A** TiO, nanocrystallite has been modified to recognise and selectively bind, by complementary hydrogen bonding, a uracil substrate incorporating a viologen moiety. electron transfer • heterosuper-Band-gap excitation of the self-assembled donor (TiO₂ nanocrystallite) -acceptor (vio- molecules · self-assembly · titanium logen) complex results in electron transfer. Some implications of these findings for the oxide \cdot viologens self-assembly of functional nanostructures containing both condensed phase and molecular components are considered.

Keywords

Introduction

A hcterosupermolecule is formed by linking a condensed phase and molecular components.^[1] As is the case for a supermolecule, the properties of the constituent components largely persist^[2] and an associated heterosupramolecular function is observed.^[2] Specifically, a heterosupermolecule consisting of covalently linked TiO, nanocrystallite, viologen and anthraquinone components has been described, $[3]$ and the associated heterosupramolecular function demonstrated, namely, light-induced vectorial electron flow.^[4] The potentiostatic modulation of this function has also been demonstrated.^[5] The potential advantages of heterosupramolecular chemistry in the construction of practical molecular devices have been noted.[51

To date, the constituent components of a heterosupermolecule have been covalently linked.^{$[1, 3-5]$} As a consequence, their self-assembly has been precluded.^[6] Recently, however, TiO, nanocrystallites stabilised by the modified pyridine **I")** (Scheme 1, $TiO, -I$) have been prepared. These nanocrystallites selectively bind, by complementary hydrogen bonding, thc modified uracil **(II)** to form the heterosupermolecule $TiO₂$ - $(I + II)$ ^[8] In a further development of these studies, the self-assembly of the electron donor (TiO, nanocrystallite)-acceptor (viologen) heterosupramolecular complex $TiO₂-(I+III)$ is reported.

Results and Discussion

The ¹HNMR spectra recorded for TiO_2-I , **III** and TiO_2-I $(I + III)$ in CDCI₃/ $[D_6]$ acetone are shown in Figure 1 a-c. The amidic proton resonances of TiO₂-I are observed at $\delta = 8.67$. The amidic and imidic proton of **III** resonate at $\delta = 9.35$ and 9.70, respectively. For $TiO₂-(I + III)$, the above resonances are observed at $\delta = 8.76, 9.36$ and 9.88, respectively. The basis for these assignments have previously been discussed in detail for $TiO₂-(I + II)^[8]$ The measured down-field shifts in the resonances assigned to the amidic protons of **I** and the imidic proton of **I11** are consistent with self-assembly, by complementary hydrogen bonding, of the heterosupramolecular complex Ti0,- $(I+III)$ (Scheme 1).^[7-9] Also shown in Figure 1 are the ¹H NMR spectra in CDCl₃/[D₆]acetone recorded for a mixture of Ti0,-I and **IV,** denoted Ti0,-(I and **IV),** and a mixture of Ti0,-CTAB and **111,** denoted Ti0,-(CTAB and **111).** For TiO₂-(I and IV), the amidic proton resonances of TiO₂-I are observed at $\delta = 8.67$ both prior to and following addition of **IV**. This observation is consistent with the assertion that TiO ,-I and **IV** do not self-assemble to form a heterosupermolecule by complementary hydrogen bonding. Similarly, for $TiO₂-(CTAB)$ and **HI),** the imidic proton resonance of **111** is observed at $\delta = 9.79$ prior to and following its addition to $TiO₂ - CTAB$. This observation is again consistent with the assertion that Ti0,-CTAB and **111** do not self-assemble to form a heterosupermolecule by complementary hydrogen bonding.

Based on these findings it was expected that band-gap excitation of the TiO₂ nanocrystallite in TiO₂-(I + III) would result in electron transfer to the viologen, whereas in $TiO₂-(I$ and **IV**) and TiO,-(CTAB and **111)** it would not. Transient and steadystate absorption experiments were performed to test this expectation.

^[*] D. Fitzmaurice, L. Cusack, S. N. Rao Department of Chemistry, University College Duhlin Beltield, Duhlin 4 (Ireland) Fax: Int. code +(1)706-2127 e-mail: dfitz@macollamh.ucd.ie

Scheme 1. TiO₂-(I+II) [8] and the three systems examined in this study.

Figure 1. ¹HNMR spectra in a CDCl₃/ $[D_6]$ acetone mixture $(1:1: v/v)$ at $20°C$: a) $TiO_2-I; b) III; c) TiO_2-(I+III); d) TiO_2 (I \text{ and } IV)$; **e**) $TiO_2 - (CTAB \text{ and } III)$.

- 3) While the visiblespectrum measured following band-gap irradiation of degassed $TiO₂ - I$ agrees with that reported for photogenerated electrons trapped in a $TiO₂$ nanocrystallite,^[10, 11] no spectrum is measured for aerated $TiO₂ - I$ under the same conditions.
- 4) Based on the final amplitude of the ms transient for degassed $TiO₂-I$ (0.0001 a.u.), an irradiation volume of 0.4 cm³ (effective path-length of 0.7cm) and a sample volume of

1.8 cm³, one predicts a steady-state absorption of 0.003 a.u. at 600 nm.

On this basis, the **ps** transient in Figure 2a is assigned *to* longlived electrons trapped in the TiO, nanocrystallite of TiO , $-I$. Finally, as there is no measurable absorption by the molecular component **I** at 355 nm, no transients are measured for **1.**

Also shown in Figure 2 are the *ps* and ms absorption transients and steady-state absorption spectra measured following band-gap excitation of $TiO₂ - (I + III)$ in chloroform/acetone. We note that:

- 1) The μ s transient is not measurably dependent on the extent to which $TiO₂-(I+III)$ is degassed.
- 2) While the ms transient for degassed TiO , $-(I+III)$ rises initially within the laser pulse and slowly during 10 ms, the ms transient for aerated $TiO₂-(I + III)$ rises only within the laser pulse.
- 3) While the ms transient for degassed $TiO₂-(I+III)$ decays to about 80% of its initial amplitude, the same transient for aerated TiO_2 – (**I** + **HI**) decays fully.
- 4) The visible spectrum measured following band-gap irradiation of degassed $TiO₂-(I + III)$ agrees well with that reported for the radical cation of viologens^[12] and, as expected, is offset from the baseline by about 0.003 a.u. due to the presence of long-lived electrons trapped in the TiO, nanocrystallites of $TiO₂-I₁^[10, 11]$ In contrast, no spectrum is measured for aerated $TiO_2 - (I + III)$ under the same conditions.
- *5)* Based on the final amplitude (0.0015 a.u.) of the ms transient for degassed TiO₂-(1+III), an irradiation volume of 0.4 cm^3 and a sample volume of 1.4 cm³, one predicts a steady-state absorption of about 0.06 a.u. at 600 nm.

cays fully.

Figure 2 shows the ps and ms absorption transients and steadystate absorption spectra measured following band-gap excitation of $TiO₂-I$ in chloroform/ acetone. We note that: 1) The *ps* transient is not measurably dependent on the extent to which $TiO₂$ -I is degassed. 2) While the ms transient for degassed $TiO₂-I$ decays to about 50% of its initial amplitude between pulses, the same transient for aerated $TiO₂-I$ de-

Figure 2. a) Transient absorption at 600 nm for degassed TiO₂-I in a chloroform/acctone mixture (1:1: v/v) at 20^oC on the us timescale following band-gap excitation at 355 nm (average of 10 pulses of 5 ns duration at 2 mJ per pulse). Also shown are the absorption transients for degassed and aerated TiO₂-I in a chloroform/acetone mixture $(1:1: v/v)$ at 20^{\degree}C on the ms timescale (average of 100 pulses of 5 ns duration at 2 mJ per pulse) (top left) and the corresponding absorption spectra measured following irradiation (bottom left). b) and spectra on the right: as above for $TiO_2 - (I + III)$.

On this basis, the us transient in Figure 2b is assigned to radical cation of III and to long-lived electrons trapped in the $TiO₂$ nanocrystallite of $TiO_2 - (I + III)$. The slow component of the ms transient for degassed $TiO_2 - (I + III)$ is assigned to the radical cation of III formed by diffusion to $TiO₂-1$.^[13] It is noted that the contribution by trapped electrons to the measured transient for degassed $TiO_2 - (I + III)$ may be accurately deduced from the transient measured for degassed $TiO₂-I$. Finally, as there is no measurable absorption by the molecular components I or III at 355 nm, no transients are measured for I, III or $(I+III)$.

Figure 3 shows the us and ms absorption transients and steady-state absorption spectra measured for $TiO₂ - (I$ and IV) in chloroform/acetone. We note that:

- 1) The us transient is not measurably dependent on the extent to which TiO_2 –(I and IV) is degassed.
- 2) While the ms transient for degassed $TiO₂-(I$ and IV) rises within the laser pulse and slowly during 10 ms, the ms transient for aerated TiO₂ – (1 and IV) rises only within the laser pulse.
- 3) While the ms transient for degassed $TiO₂ (I$ and IV) decays to about half its maximum amplitude, the same transient for aerated $TiO_2 - (I$ and IV) decays fully and agrees well with that for aerated $TiO_{2}-I$.
- 4) The visible spectrum measured following band-gap irradiation of degassed $TiO₂ - (I$ and IV) agrees well with that reported for the radical cation of viologens, [12] and is offset from the baseline by about 0.003 a.u. due to the presence of long-lived electrons trapped in the TiO₂ nanocrystallites of $TiO₂-1^[10, 11]$ In contrast, no spectrum is measured for aerated $TiO₂ - (I$ and IV) under the same conditions.

5) Based on the difference of the final amplitudes of the ms transients (0.0005 a.u.), an irradiation volume of 0.4 cm^3 and a sample volume of 1.4 cm^3 , one predicts a steady-state absorption of 0.02 a.u. at 600 nm for degassed TiO , -(I and IV) by reduced IV.

On this basis, the us transient in Figure 3a is assigned to electrons trapped in a TiO₂ nanocrystallite and to the radical cation of IV formed by diffusion to the surface of $TiO₂-L^[13] Finally,$ as there is no measurable absorption by the molecular components I or IV at 355 nm, no transients are measured for I, IV or $(I$ and IV).

Also shown in Figure 3 are the us and ms absorption transients and steady-state absorption spectra measured for TiO,-(CTAB and III) in chloroform/acetone. Qualitatively, they agree with those measured for TiO_2 – (I and IV) although, the following quantitative differences are noted: Firstly, the ms transients for degassed and aerated TiO_2 – (CTAB and III) decay more slowly.^[14] Therefore, while the visible spectrum measured following band-gap irradiation of degassed TiO₂-(CTAB and III) agrees well with that reported for the radical cation of viologen, $[12]$ it is offset from the baseline by about 0.006 a.u., twice the value for degassed $TiO₂$ –(1 and IV), owing to the presence of longer-lived electrons trapped in the TiO, nanocrystallites of $TiO, -I^[10, 11]$ Consistent with the above and in contrast to aerated $TiO₂-(I$ and IV), a spectrum is measured for aerated $TiO₂$ –(CTAB and III), which agrees well with that reported for photogenerated long-lived electrons trapped in TiO₂ nanocrystallites.^[10, 11] Secondly, based on the difference of the final amplitudes of the ms transients (0.0005 a.u.), an irradiation volume of 0.4 cm^3 and a sample volume of 1.4 cm^3 , one predicts a steady-state absorption of 0.02 a.u. at 600 nm for degassed

Figure 3. a) Transient absorption at 600 nm for degassed TiO,-(I and IV) in a chloroform/acetone mixture (1:1: v/v) at 20 °C on the us timescale following band-gap excitation at 355 nm (average of 10 pulses of 5 ns duration at 2 mJ per pulse). Also shown are the absorption transients for degassed and aerated TiO₂-(I and IV) in a chloroform/acetone mixture $(1:1: v/v)$ at 20 °C on the ms timescale (average of 100 pulses of 5 ns duration at 2 mJ per pulse) (top left) and the corresponding absorption spectra measured following irradiation (bottom left). b) and spectra on the right: as above for $TiO₂ - (CTAB)$ and III)

 $TiO₂$ (CTAB and III) by reduced III. On this basis, the us transient in Figure 3 b is assigned to electrons trapped in a TiO₂ nanocrystallite and to the radical cation of III formed by diffusion to the surface of TiO_2 –**CTAB**. Finally, as there is no measurable absorption by the molecular components CTAB or III at 355 nm, no transients are measured for CTAB, III or (CTAB and IV).

As the optical absorption at 355 nm of the nanocrystallite in $TiO₂ - I$ nm is 0.1 a.u., the pulse energy is 2 mJ, the cross-sectional area for irradiation is 0.4 cm² and assumed reflection losses are 20% , it is estimated that six electron-hole pairs are generated in each $TiO₂$ nanocrystallite. From the initial amplitude of the us transient in Figure 2b for degassed $TiO_2 - (I + III)$ and the known extinction coefficient for the reduced form of viologen, $[12]$ it is estimated that one radical cation of III is formed per particle. That is, the charge separation efficiency is about 6% with the majority of the photogenerated electronhole pairs being lost by recombination or trapping.[10,11] From the initial amplitudes of the us transients for degassed $TiO, -(I$ and IV) and $TiO, -(CTAB$ and III), equal to that for degassed $TiO₂ - I$, it is clear that no radical cations of IV and III are formed within the laser pulse, although, as for $TiO₂$ - $(I + III)$, they are subsequently formed on the ms timescale by diffusion. It is noted that the molecular components of $TiO₂$ - $(I+III)$, TiO₂-(I and IV) or TiO₂-(CTAB and III) may undergo oxidative degradation under prolonged irradiation in the absence of a suitable hole scavenger.^[15] However, no evolution of the transients was observed in Figures 2 or 3 that might be attributed to oxidative photodegradation of the molecular components.

Conclusions

In short and as represented pictorially in Scheme 2 (top), TiO_{2} I containing a diaminopyridine moiety recognises and selectively binds the modified viologen III containing a uracil moiety. Light-induced vectorial electron flow is observed for the resulting donor-acceptor complex. There is ample precedent for electron transfer over long distances in supermolecules and their organised assemblies.^[16] In the absence of a uracil moiety (Scheme 2, middle) the modified nanocrystallite $TiO_2 - I$ does not recognise or selectively bind the viologen IV. Similarly, in the absence of a diaminopyridine moiety (Scheme 2, bottom) the modified nanocrystallite $TiO₂-CTAB$ does not recognise or selectively bind the modified viologen III. In neither of these last two cases is direct light-induced electron transfer to the viologen moiety observed. Our current studies are directed toward modifying the surface of a $TiO₂$ nanocrystallite to selectively bind another condensed-phase component.^[17] Looking further to the future, analogous approaches involving many condensed phase and molecular components may be envisaged and offer the prospect of self-assembling complex heterosupramolecular structures.

Experimental Procedure

TiO₂ nanocrystallites ($d = 22 \pm 2 \text{ Å}$ and $\lambda_{\text{onset}} = 360 \text{ nm}$) were prepared in CDCl₃ in the presence of **I** or **CTAB** to form the stable sols denoted $TiO_2 - I$ or TiO_2 -CTAB respectively [18].

I and II have been prepared and characterised previously [7,8]. A summary of their ¹HNMR spectra is given.

(CTAR and **111).**

I(CDCI₃): $\delta = 0.88$ (t, 6H, $J = 7.0$ Hz), 1.25 - 1.74 (m, 36H), 2.36 (t, 4H, $J = 7.6$ Hz), 7.52 (s, 2H, -NH amidic), 7.69 (t, 1H, $J = 8.2$ Hz), 7.88 (d, 2H, $J = 8.2$ Hz).

II (CDCI₃): $\delta = 0.88$ (t, 6H, $J = 7.0$ Hz), 1.26-1.58 (m, 40H), 2.36 (t, 2H, ./ = 7.8 Hz), 4.16 **(s.** 2H), 5.52 (s, 1 H); 8.14 (s, 1 H, -NH amidic); 9.51 (s, 1 H, -NH imidic).

III.(PF_6)₂ and IV.(PF_6)₂ were synthesised as shown in Scheme 3 and characterised by elemental analysis and 'H NMR.

111. (PF₆),: Calculated C, 52.42; H, 7.10; N, 6.95. Found: C, 52.02; H, 7.02; N, 6.83. ¹HNMR ([D₆]acetone): $\delta = 0.86$ (t, 6 H, J = 6.7 Hz), 1.28-1.39 (m, 46H). 3.60 (t, 2H, J =7.8 Hz), 4.52 *(s,* 2H), **5.00** (t, 2H, J =7.6 Hz), 5.52 *(s,* **lH),6.32(5,2H),7.5(brs,IH,-NHamidic),8.87-8.91** (dd,4H, J=S.I, 2.0 Hz), 9.35 (d, 2 H, $J = 7.3$ Hz), 9.49 (d, 2 H, $J = 7.1$ Hz), 9.90 (s, 1 H, NH imidic)

IV.(PF,),: Calculated C, 49.44; H, 6.92; N, 3.85. Found: C, 50.00: H, 7.11; N, 3.84. ¹H NMR ([D₆]acetone): $\delta = 0.88$ (t, 3H, $J = 6.6$ Hz), 1.28-1.32 (m, 32H). 1.80 (t, 3H, J=7.4Hz), 4.96 **(q,** 4H, J=7.4Hr), 8.85 (dd, 4H, unresolved coupling), 9.43 (d, 2H, unresolved coupling), 9.46 (d, 2H, unresolved coupling). CTAB was used as supplied without further purification. **A** summary of its ¹HNMR spectrum (CDCI₃): $\delta = 0.88$ (t, 3H, $J = 6.6$ Hz), 3.25-1.36 (m. 28H), 1.78 **(m,** 2H). *3.50* (s, 9H).

General procedure: A solution of the required molecular component, either **111** or IV, was prepared in acetone or $[D_6]$ acetone and added to an equal volume of TiO_2-I or TiO_2-CTAB in chloroform or $CDCl_3$. The final (particle) concentration of $TiO₂$ nanocrystallites was 4×10^{-7} moldm⁻³. The final (molecular) concentration of **I, 111, IV** and **CTAB** was, in each case, 4×10^{-4} moldm⁻³. It is noted, that under these conditions, about 70% of 1 or **CTAB** are adsorbed at the nanocrystallite surface [S]. The above sols were studied by 'H NMR and transient optical ahsorption spectroscopy at 20°C. All NMR spectra were recorded on either a JEOL JNM-GX270 FT or Varian

Scheme 3. Reaction conditions for synthesis of **I11** and **IV:** a) Octadecylamme. i PrOH, reflux, N₂; b) chloroacetic anhydride, pyridine-chloroform, RT; c) 4nonylbipyridinium bromide, acetonitrile, reflux: d) methanolic ammonium hexafluorophosphate; e) excess ethyl bromide (neat), RT; f) octadecyl bromide, acetonitrile. **rcflux: g)** as in (d).

500 FT spectrometer. All absorption transients were recorded, unless otherwise stated, at 600 nm following pulsed excitation at 355 nm *(5* ns, 2 mJ pulse^{-1}) of a rigorously degassed samples contained in a vacuum-tight 1 cm by 1 cm quartz cell. The transient absorption spectrometer, a doublebeam laser-based system capable of measuring absorption changes *of* 5×10^{-5} absorbance units, has been described in detail elsewhere [19]. Transients reported on the ps timescale are the average of ten measurements, those reported on the ms timescale are the average of one hundred measurements. Absorption spectra were measured using a Hewlett-Packard 8452 A diode array spectrophotometer.

Acknowledgements: This work was supported by a grant from the Commission of the European Union under the Joule 111 programme (Contract JOR 3- CT960107). The authors thank D. Harris of Cell Media for the cover design.

Received: June 13, *3996* [F478]

- [I] X. Marguerettaz, R. O'Neill, D. Fitzmaurice, *J Am. Cheni.* Soc. **1994,** *1/6.* 2628.
- [2] a) .I.-M. Lehn, *Supramolecular Chemistry,* VCH: Weinheim, **1995.** h) V Baizani, F. Scandola, *Supramolecular Photochemistry*, Ellis Horwood: New York, **1991;** Chapt. 3.
- [3] X. MargUerettdz, D. Fitzrnaurice, *J Am. Chem. Soi.* **1994.** *1/6,* 5017.
- (41 X. Marguerettaz, G. Redrnond, **S.** N. Rdo, D. Fitzmaurice, *SPIE PwcredinRs*
- Series 1994, 2255, 793. 151 X. Marguerettaz, G. Redmond, S. N. Rao, D. Fitzmaurice, *Chrm. Eur.* .I **1996.** 2. 420.
- [6] a) D. Philp, J. F. Stoddart, *Synlett* **1991**, 445. b) J. S. Lindsey, *New J. Chem.* **1991,** 15,153. c) **G.** M. Whitesides, J. P. Mathias, *C.* T Seto, 1312.
- 1868. *[7]* M: J. Brienne, J. Gabard, J.-M Lehn, *J Chem. Soi Chem. Cornmun.* **1989.**
- *[8]* L. Cusack, S. N. Rao. J. Wenger, D. Fitzmaurice, *Ckm. Matw* in press.
- [Y] a) B. Feibush, **A.** Fiucroa, R. Charles, K. Onan. P. Feibush. B. Karger. *J. Am Chrw. Sot.* **1986.** *108.* 3310. h) B. Feibush, M. Saha, K. Onan. B. Karger. R. Giese. *ihid.* **1987,** *IUY,* 7531. c) **A.** Hamilton, D. Van Engen, *hid.* **1987,** *109,* 5035. d) A. Bisson, F. Carver, C. Hunter, J Waltho, *ihid.* **1994,** *116,* 10292.
- [10] a) A. Henglein, *Ber. Bunsenges. Phys. Chem.* 1982, 86, 246. b) D. Duonghong, J. Ramsden, M. Gritzel, *J Am. Chem. Sor.* **1982,** *104.* 2977. cj U. Kolle, J. Moser, M. Gritzel, *Inorg. C'heni.* **1985,** *24,* 2253. d) G. Rothenberger, J. Moser, M. Grätzel, N. Serpone, D. Sharma, *J. Am. Chem. Soc.* **1985**, *107*, 8054.
- [11] There is apparently general agreement that the spectrum of trapped holes does not extend to wavelengths longer than about 450 nm: a) D. Bahnemann, **A.** Henglein, J. Lilie, **L.** Spanhei, *J. Phys. Chern.* **1984,** *88,* 709. b) 0. Micic, Y Zhang, R. Cromack, A. Trifunac, M. Thurnauer, *J. Phys. Chem.* 1993, 97, *1271.*
- [12] a) B. **Kok,** K. Rurainski, 0. Owens, *Biocham. Bioplzys. Actu* **1965,** 109, 347. b) P. Trudinger, Ananl. Biochem. 1970, 36, 222. c) T. Wantanabe, K. Honda, *J. Phys. Ckm.* **1982,** *86,* 261 **7**
- [t3] H. Frci, D. Fitzmaurice, M. Gritzel, *Lunginuir* **1990,** 6, **198.**
- (141 L. Cusack, X. Marguerettaz, *S.* N. Rao, J. Wenger, D. Fitzmaurice, unpublished results. The detailed reasons for the slower rate of decay of the transient assigned to long-lived trapped electrons in $\text{TiO}_2\text{--}(\textbf{CTAB} \text{ and } \textbf{III})$ as compared

with TiO₂-(I and IV) will be discussed here and supported by detailed NMR studics.

- [15] Ethanol has been shown to act as an efficient hole scavenger in a number of studies: H. Finklea in *Semiconductor Electrodes* (Ed. H. Finklea). Elsevier, New York, **1988, p.** 133.
- [16] a) C. Chidsey, *Science* **1991,** *251,* 919. h) H. Finklea, D. Hanshew. *J. Am. Cl2em.* Soc. **1992,** *!/4,* 3173. c) G. Cleland, B. Horrocks, **A.** Houlton, *J. C/IC~. Soc. Furuduy 7?atis.* **1995,** *91,* 4001.
- [17] R. Rizza, L. Cusack, D. Fitzmaurice, submitted for publication.
- [18] N. Kotov, F. Meldrum, J. Fendler, *J. Phys. Chem.* 1994, 98, 2735.
- [19] D. Fitzmaurice, M. Eschle, H. Frei, J. Moser, *J. Phys. Chem.* 1993, 97, 3x06.